Morning Session is Currently in Progress

Please Join WebEx Room Number
926 591 014
energy.webex.com
Survival Tips for Entrepreneurs

Moderator: Dr. Danielle Applestone

Presenters: Dr. Gregory Poilasne, Kristin Sampayan, Tim Latimer, Leila Madrone, Dr. Kristin Denault
Lunch Session is Currently in Progress

Please Join WebEx Room Number
926 591 014
energy.webex.com
Broadening Storage Technologies
Beyond Lithium-Ion

Moderator: Edward Randolph

Presenters: Laurence Abcede, Richard Wirz, Philippe Bouchard, Rick Winter, Byron Washom
2019 EPIC Symposium
Broadening Storage Technologies
Beyond Lithium Ion

Vanadium Redox Flow Battery Demonstration at San Diego Gas & Electric Company

Laurence Abcede
Distributed Energy Resources
February 19, 2019
The New Energy and Industrial Technology Development Organization (NEDO) and Sumitomo Electric (SEI), sought a California IOU partner for a United States demonstration project.

- Provide a full-scale system, between 2-8 MW, to support any use case determined by the IOU.

- SDG&E was chosen as the IOU member to partner with SEI.

- Miguel Substation in Bonita, CA was chosen as the most suitable location.

- SEI and SDG&E signed an agreement on April 2016.

- The VRF Battery was commissioned and fully operational on June 2017.

- The VRF Battery is participating in the CAISO marketplace as of December 2018.
Miguel Vanadium Redox Flow Battery Installation
Example of Operation
Summary of Lessons Learned

Needs
- Multi-Purpose Asset
- Mitigate intermittency of PV
- Store excess renewables
- Ramp support

Demonstrate
- Limitless Cycles
- Long Lifetime
- Use of High Power PCS
- Efficiency Enhancement

Use Case Drives Technology Choice
- Power vs. energy
- Technology cost
- Technology safety
Questions?

Thank You

Laurence Abcede
SDG&E DER Manager
labcede@semprautilities.com
Znyth® Battery Specification

Design 132

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Units</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Voltage</td>
<td>V<sub>DC</sub></td>
<td>64</td>
</tr>
<tr>
<td>Voltage Range</td>
<td>V<sub>DC</sub></td>
<td>44 to 82</td>
</tr>
<tr>
<td>Rated Power</td>
<td>kW</td>
<td>0.5</td>
</tr>
<tr>
<td>Rated Energy</td>
<td>kWh</td>
<td>2.0</td>
</tr>
<tr>
<td>Nominal Discharge Current</td>
<td>A<sub>DC</sub></td>
<td>8.0</td>
</tr>
<tr>
<td>Maximum Current</td>
<td>A<sub>DC</sub></td>
<td>22</td>
</tr>
<tr>
<td>Short Circuit Current</td>
<td>A<sub>DC</sub></td>
<td>350 maximum</td>
</tr>
<tr>
<td>Short Circuit Time Constant (L/R)</td>
<td></td>
<td>< 5ms</td>
</tr>
<tr>
<td>Round Trip DC Efficiency</td>
<td>%</td>
<td>Approximately 75 at 100% DoD</td>
</tr>
<tr>
<td>Self-Discharge</td>
<td>Whr/hr</td>
<td>25</td>
</tr>
<tr>
<td>UL Rating</td>
<td></td>
<td>UL 1973 (pending)</td>
</tr>
<tr>
<td>Optimum Operating Temperature (Ambient)</td>
<td>°C</td>
<td>10 to 45</td>
</tr>
<tr>
<td>Maximum Operating Temperature (Ambient)</td>
<td>°C</td>
<td>-20 to 55</td>
</tr>
<tr>
<td>Dimensions (H x W x D)</td>
<td>in. (cm)</td>
<td>15.36 x 17.05 x 27.41 (39.0 x 43.3 x 69.6)</td>
</tr>
<tr>
<td>Weight</td>
<td>Lbs (kg)</td>
<td>~275 (125)</td>
</tr>
</tbody>
</table>

Table 1: Summary of the Znyth Battery Gen 2.0 Beta (CID 132)
Figure 1: Charge/Discharge VDC vs. SOC (@C/4 Charge/Discharge Rate)

View 1: Battery Drawings (dimensions in
View 2: Front panel with terminals and connection ports
(dimensions are in inches)
UniEnergy Technologies
Rick Winter, CEO

Commercializing High Performance Vanadium Flow Batteries

2012, 2013, 2014
• IP DEVELOPMENT
 • Electrochemical, Mechanical, Power & Controls Engineering

2015, 2016, 2017
• PRICELESS FIELD EXPERIENCE
 • Understanding Customers
 • Contract Manufacturing

2018
• PIVOT TO REFLEX™
 • Customer Driven Design
 • Flexible, Modular, Resilient

2019
• 100kW C&I PROJECTS
 • High System Availability
 • Industrial Design

2020
• ELECTRICITY WAREHOUSING
 • E’lyte Leasing
 • Storage-as-a-Service

10MW/40MWh on 15,000ft²

EPIC Symposium
$500MM collaboration over 15 years to deliver the most resilient, safe and cost-effective battery for bulk electricity storage.
UET’s no-fade performance is a strong advantage over leading lithium technologies that degrade 15-20% over 12 months.

- All state-of-the-art lithium batteries are exhibiting precipitous capacity fade after only 12 months of testing.
- Tests are performed within manufacturers recommended SOC limits and including obligatory rest periods between charging and discharging.
- Lithium batteries are typically deemed to have failed at 80% capacity due to accelerating decay mechanisms.

- UET’s vanadium flow batteries do not exhibit any capacity fade over >3400 cycles to 100% DOD with no rest periods between cycles.
- This performance stability substantially eliminates operational risks when deploying large scale electricity storage plants.

Compelling Safety of Flow Batteries

- Aqueous electrolytes that comprise most flow batteries are non-flammable and non-reactive with water
- Stopping the pumps switches off the chemical reaction
- Stranded energy in the stacks is insufficient to cause re-ignition hazards or arc flash
- Electrolyte and other materials are not a fuel source, but may release hazardous materials when exposed to a sustained external fire

Lithium Batteries

1. FIRES: More than 20 Lithium Battery Fires >1MWh in the last year

2. EXPLOSIVE RE-IGNITION
 Three experienced firefighters were severely burned after this 2.5MWh lithium fire was contained

3. TOXIC FUMES: this lithium battery with state-of-the-art fire protection failed during commissioning, closing freeways and evacuating citizens
Networking Break
and
Poster Session
Non-Battery Solutions for Grid Flexibility

Moderator: Matthew Tisdale

Presenters: Tom Tansy, Dr. Ajit Renjit, Dr. Edward Cazalet
Flexibility Enabled by Rule 21 Ph 3 Functions

Update on CEC 16-079 Grp 4

Ajit A Renjit, PhD
Technical Lead – DERMS & Microgrid Controls
CEC EPIC Symposium 2019
02/20/2019
CA Rule 21 Phase 3 Functions

<table>
<thead>
<tr>
<th>No.</th>
<th>Function Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Monitor Key DER data</td>
</tr>
<tr>
<td>2</td>
<td>DER Cease to Energize and Return to Service Command</td>
</tr>
<tr>
<td>3</td>
<td>Limit Maximum Active Power Mode</td>
</tr>
<tr>
<td>4</td>
<td>Set Active Power Mode</td>
</tr>
<tr>
<td>5</td>
<td>Frequency-Watt Mode</td>
</tr>
<tr>
<td>6</td>
<td>Volt-Watt Mode</td>
</tr>
<tr>
<td>7</td>
<td>Dynamic Reactive Current Support</td>
</tr>
<tr>
<td>8</td>
<td>Scheduling Power values and Modes – Volt/VAR, Power Factor and Volt/Watt</td>
</tr>
</tbody>
</table>

Project Plan:
- Feeder Modeling and Economic Assessment of Phase III Functions
- Implementation of Phase III Functions
- Develop Compliance Test Procedures
- Laboratory and Field Evaluation
- Cyber Security Testing and Public Key Infrastructure
Flexibility Enabled by Rule 21 Ph 3 Functions

Ph 3 Functions when managed (DERMS) enables more DER capacity to interconnect by managing real-power output of DER to stay within grid-level constraints.
Flexibility Enabled by Rule 21 Ph 3 Functions

Autonomous Control

Rule 21 Ph 3

- Option A
- Option B

Managed Control

Rule 21 Ph 3 Fxns. when Managed

- Inverters are turned down/off to curtail output
- Ramp rates between set point changes are controlled

<table>
<thead>
<tr>
<th>Voltage (pu)</th>
<th>Active Power %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1.02</td>
<td>1</td>
</tr>
<tr>
<td>1.04</td>
<td>1</td>
</tr>
<tr>
<td>1.06</td>
<td>0.8</td>
</tr>
<tr>
<td>1.08</td>
<td>0.8</td>
</tr>
<tr>
<td>1.1</td>
<td>0.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minutes</th>
<th>Power Output (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>90</td>
</tr>
<tr>
<td>4</td>
<td>85</td>
</tr>
<tr>
<td>6</td>
<td>80</td>
</tr>
<tr>
<td>8</td>
<td>75</td>
</tr>
<tr>
<td>10</td>
<td>70</td>
</tr>
<tr>
<td>12</td>
<td>80</td>
</tr>
<tr>
<td>14</td>
<td>90</td>
</tr>
<tr>
<td>16</td>
<td>95</td>
</tr>
<tr>
<td>18</td>
<td>100</td>
</tr>
<tr>
<td>20</td>
<td>100</td>
</tr>
</tbody>
</table>
Flexibility Enabled by Rule 21 Ph 3 Functions

Optimal PV system designs already curtail available solar energy

- 13% increase in DC Capacity
- <0.1% of annual energy “clipped”
- 40 hours per year

Typical PV system designs limit (“clip”) available solar energy based on fixed capacity limits. Curtailment IS Cost-Effective for PV Plant Developers.
Recognizing Time-Varying Grid Constraints

Should feeder capacity be expanded to be used only a few hours per year?

Takeaway: Curtailment can be a low cost integration solution.

<table>
<thead>
<tr>
<th>Time-Varying Grid Export Limit</th>
<th>Available PV Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV Output (Flexible Limit)</td>
<td>Fixed Capacity Limit</td>
</tr>
<tr>
<td>PV Output (Fixed Capacity Limit)</td>
<td></td>
</tr>
</tbody>
</table>

60% increase in PV capacity
<0.1% energy curtailment
<20 hours per year
Rule 21 Ph 3 Sets-the-stage for Flexible Interconnections

What is Flexible I/C? Offer DER customers **faster** and **cheaper** interconnection to integrate more DER in areas with limited hosting capacity

Drivers
- Low resource costs
 - i.e. cheap/available land
- Expensive grid-side mitigation measures
- Infrequent need to curtail

Benefits
- **DER customers:** faster, cheaper connection; can be temporary
- **Ratepayers:** reduce socialized portion of upgrade costs; improved network utilization
- **Policy objectives:** Accelerate progress towards DER penetration goals and/or emissions targets

Example Use Case:
- Avoid construction of dedicated feeders
Together...Shaping the Future of Electricity
Reduce Costs of Meeting California’s 2045 100% Clean Energy, Electrification, and GHG Goals by Enabling Retail Customers to Self-Manage, Shape, and Shift Electricity Use, Storage, and Supply so that Net Electricity Usage Better Follows Variable Solar & Wind Generation using IoT + Subscription Transactive Tariffs + Transactive Energy Platforms
- Fixed Cost Subscriptions Stabilize Customer Electric Bills
- Variable Buy and Sell Prices Enable Self-Management
RATES Customer Battery Example

Battery Specifications:
- 9.8 kWh Storage Capacity
- 8.5 kWh Maximum Storage
- 1.5 kWh Minimum Storage
- 5 kW Maximum Discharge Rate
- 3.5 kW Maximum Charge Rate
- 90% Round Trip Efficiency

Operating Results:
- 14 kWh / Day Discharge
- 15.56 kWh / Day Charge

$17.00 First Day Net Revenues
$13.50 Second Day Net Revenues
Smart Inverter Interoperability Standards and Open Testing Framework to Support High-Penetration Distributed Photovoltaics and Storage

Summary of EPC 14-303
February 19, 2019
Program Objectives

• Deliver a test & certification framework for CA Rule 21 compliance
• Reduce DER system engineering costs by 10%
• Demonstrate safe DER penetration on feeder circuits above the IEEE-mandated 15% limit using communication and smart inverters
• Demonstrate the ability of smart inverters to support the power grid during system disturbances and increase power grid reliability
• Identify new revenue models for DER investors and operators
SunSpec Open Source Reference Test Platform

Test Capability

- Advanced inverter and storage
- SunSpec Modbus
- IEEE 2030.5*

* Available Q1 2019
SunSpec Open Source Reference Test Platform At UCSD

- Five manufacturers proven CA Rule 21 compliant
- Standard communication interface enables CA Rule 21 Phase 1 remote settings
IEEE 2030.5/CSIP Enhances Grid Stability

- 15 PV+storage systems networked with IEEE 2030.5/CSIP
- Demonstrated CA Rule 21 Phase 1 settings changes alleviate grid issues
DER Circuit Penetration: Safe At 100%+

ES 2: Normalized tap operation (left) and line losses (right) as a function of increasing PV penetration. The left image has two y axis. The right axis represents the average tap operations per day of the feeder with increasing PV penetrations. The left axis represents normalized tap operations of the feeder in the presence of SI.
Cost Efficiency From Standardization

- Standard communication interface eliminates network integration cost
- Standard PKI ensures uniform, low-cost cybersecurity solutions
Contact Information

Phone
408-217-9110

Web
www.SunSpec.org

Email
info@sunspec.org

Social